New synthetic entries to $\gamma\text{-heteromethyl-substituted}$ $\alpha,\beta\text{-butenolides}$

C. Estopà, J. Font^{*}, M. Moreno-Mañas, F. Sánchez-Ferrando, S. Valle and L. Vilamajó

Departament de Química Orgànica. Universitat Autònoma de Barcelona. Cerdanyola. Barcelona. Spain.

Summary: The title compounds have been obtained from C_3 plus C_2 synthons by a variety of chemical and photochemical methods.

Butenolide precursors have been recently used in the synthesis of antileukaemic lignans ' and prostaglandin analogs³. Furthermore, very recently the antibiotic γ -chloromethyl- γ -hydroxy- α -methyl- α , β -butenolide (lepiochlorin) has also been synthesized⁴. This prompts us to publish our own results in the field of butenolide synthesis.

Our first target, γ -hydroxymethyl- α , β -butenolide <u>1</u> could be obtained by two methods as shown in the Scheme. Epoxidation⁵ of acrolein (H₂O₂, pH \mathcal{E}) gave glycidaldehyde <u>2</u> in high conversion, which without isolation was subject d to Wittig reaction, yielding in 23% overall yield from acrolein a 2:3 <u>E:Z</u> mixture of epoxyesters <u>3</u>. Acidic treatment of the <u>Z</u> isomer (separated by t.l.c.) or, more conveniently, of the mixture of <u>E:Z</u> isomers, led to <u>1</u> (10% overall yield from acrole<u>n</u> in). The main byproduct <u>4</u>, which comes from (<u>E</u>)-<u>3</u>, was easily separated by disti<u>1</u> lation. Alternatively, <u>1</u> could also be obtained from glyceraldehyde <u>5</u> by Wittig reaction to diolester⁶<u>6</u> (80%) followed by UV irradiation with a 400 W mediumpressure mercury lamp; the overall yield of <u>1</u> from <u>5</u> was 75%. Derivatives <u>7</u> (9%, m.p. 163-4°C), <u>8</u> (41%) and <u>9</u> (34%, m.p. 114-6°C) were prepared from <u>1</u> as shown in the Scheme.

Another approach to γ -alkoxymethyl- α , β -butenolides is exemplified in the Scheme for the case of <u>n</u>-butyl ether <u>10</u>. Condensation of <u>n</u>-butoxymethyloxirane <u>11</u> with sodium dimethyl malonate gave the lactone <u>12</u> (X=H) (53% yield), which upon chlorination⁷yielded <u>12</u> (X=Cl). One-pot acidic treatment of the last led to the chlorolactone <u>13</u> (Y=Cl). Replacement of chlorine led to <u>13</u> (Y=PhS), whose oxidation yielded <u>14</u> which without further purification was heated to afford <u>10</u> in 39% overall yield from 11.

Our second target, γ -bromomethyl- α,β -butenolide <u>15</u>, could also be prepared from acrolein in two ways, both involving photochemical mediated lactonization of appropriate precursors. Thus, the easily polymerizable butadiene derivatives

<u>16</u> were prepared by Wittig (R^2 =Me, 25% yield) or Knoevenagel⁸ (R^2 =H, 70% yield) reactions.

1468

 $Br^{-}\phi_{3}\dot{P}-CH_{2}COCH_{2}CH_{2}COOH$

20

a: $\phi_3 P=CHCOOMe / ref.$ in $C_6 H_6$; b: $\phi_3 P=CHCOOMe / H_2O-MeOH / r.t.$; c: UV hv, 400 W/ MeOH, H⁺ / r.t.; d: HClO₄ / ref. in acetone; e: (MeOCO)₂CHNa / ref. in MeOH; f: SO₂Cl₂ / 80°C; g: ref. in HCl-AcOH; h: NaSPh / ref. in EtOH; i: NaIO₄ / MeOH-H₂O / r.t.; j: ref. in toluene; k (R'=Me): CH₂N₂ / BF₃-ether; k (R'=C ϕ_3): ϕ_3 CCl / Pyr.; k (R'=CONHPh): PhNCO / ref. in C₆H₆; l (R²=H): H₂C(COOH)₂ / pyr. / 70°C; l (R²=Me): $\phi_3 P=CHCOOMe / H_2CCl_2 / r.t.$; m (R²=H): Br₂ / NaHCO₃ / H₂O / r.t. or NBS / H₂O / r.t.; m (R²=Me): NBS / H₂O / r.t.; n (R²=H): UV hv, 400 W / H₂O, H⁺ / r.t.; n (R²=Me): UV hv, 400 W / MeOH, H⁺ / r.t.; o: NaSPh / DME / 0°C; p: $\phi_3 P / C_c H_c / r.t.$

Bromohydrins <u>17</u> could be obtained in 50-65% yield from compounds <u>16</u> by treatment with either aqueous NBS or bromine⁹ as shown in the Scheme. Irradiation of <u>17</u> with the above mentioned lamp under acidic conditions led to <u>15</u> in 56-75% yield. The best way to <u>15</u> (24% overall yield from acrolein) was <u>via</u> <u>16</u> (R^2 =H) and its reaction with bromine in aqueous NaHCO₂.

The useful intermediate <u>15</u> was converted into γ -phenylthiomethyl- α , β -butenolide <u>18</u> by treatment with 1 equiv. of sodium phenylthiolate (25%). Unexpectedly, however, reaction of <u>15</u> with triphenylphosphine afforded the unstable (2-oxo-2,3dihydro-5-furylmethyl)triphenylphosphonium bromide <u>19</u> (65%; m.p. 172-8°C), rather than the expected unrearranged salt. On standing <u>19</u> hydrolyzes to (4-carboxy-2oxobutyl)triphenylphosphonium bromide 20 (m.p. 231-3°C).

We are presently exploring the preparation of more ether derivatives of $\underline{1}$ and other hetero derivatives from $\underline{15}$. Also in the following paper¹⁰, an entry to ethers of chiral $\underline{1}$ is described.

All compounds mentioned showed the expected spectroscopic behaviour and the new ones exhibited satisfactory elemental analyses.

ACKNOWLEDGEMENTS

We thank Dr. P. de March and Dr. A. Virgili for running the mass spectra, and AICAR S.A. (Cerdanyola) for a generous gift of compound <u>11</u>. Grants (to C.E. and S.V.) from the former Ministerio de Educación y Ciencia (Spain) and financial support from Comisión Asesora de Investigación Científica y Técnica are gratefully acknowledged.

REFERENCES

K. Tomioka, T. Ishiguro, K. Koga; J. Chem. Soc. Chem. Commun, <u>1979</u>, 652.
K. Tomioka, T. Ishiguro, K. Koga; Tetrahedron Lett., <u>1980</u>, 2973.
A. G. Pernet, H. Nakamoto, N. Ishizuka, M. Aburatani, K. Nakahashi, K. Sakamoto, T. Takenchi; Tetrahedron Lett., <u>1979</u>, 3933.
J. R. Donaubauer, T. C. McMorris; Tetrahedron Lett., <u>1980</u>, 2771.
G. B. Payne; J. Amer. Chem. Soc., <u>81</u>, 4901, (1959).
J. Font; Anales de Quím., <u>62B</u>, 477, (1966).
R. Gaudry, C. Godin; J. Amer. Chem. Soc., <u>76</u>, 139, (1954).
O. Doebner; Chem. Ber., <u>35</u>, 1136, (1902).
R. G. Gushkov, O. Y. Magidson; Med. Prom. SSSR, <u>16</u>, N°3, 27-31, (1962).
C. K. Ingold, G. J. Pritchard, H. G. Smith; J. Chem. Soc., <u>1934</u>, 79-86.
-P. Camps, J. Font, O. Ponsatí; Tetrahedron Lett., <u>1981</u>. Accompanying paper.

(Received in UK 26 January 1981)